skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boyd, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Samarium diiodide (SmI2) is a privileged, single-electron reductant deployed in diverse synthetic settings. However, generalizable methods for catalytic turnover remain elusive because of the well-known challenge associated with cleaving strong SmIII–O bonds. Prior efforts have focused on the use of highly reactive oxophiles to enable catalyst turnover. However, such approaches give rise to complex catalyst speciation and intrinsically limit the synthetic scope. Herein, we leveraged a mild and selective protonolysis strategy to achieve samarium-catalyzed, intermolecular reductive cross-coupling of ketones and acrylates with broad scope. The modularity of our approach allows rational control of selectivity based on solvent, pKa(whereKais the acid dissociation constant), and the samarium coordination sphere and provides a basis for future developments in catalytic and electrocatalytic lanthanide chemistry. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract Loss and damage from climate change, recognized as a unique research and policy domain through the Warsaw International Mechanism (WIM) in 2013, has drawn increasing attention among climate scientists and policy makers. Labelled by some as the “third pillar” of the international climate regime—along with mitigation and adaptation—it has been suggested that loss and damage has the potential to catalyze important synergies with other international agendas, particularly sustainable development. However, the specific approaches to sustainable development that inform loss and damage research and how these approaches influence research outcomes and policy recommendations remain largely unexplored. We offer a systematic analysis of the assumptions of sustainable development that underpins loss and damage scholarship through a comprehensive review of peer-reviewed research on loss and damage. We demonstrate that the use of specific metrics, decision criteria, and policy prescriptions by loss and damage researchers and practitioners implies an unwitting adherence to different underlying theories of sustainable development, which in turn impact how loss and damage is conceptualized and applied. In addition to research and policy implications, our review suggests that assumptions about the aims of sustainable development determine how loss and damage is conceptualized, measured, and governed, and the human development approach currently represents the most advanced perspective on sustainable development and thus loss and damage. This review supports sustainable development as a coherent, comprehensive, and integrative framework for guiding further conceptual and empirical development of loss and damage scholarship. 
    more » « less
  4. null (Ed.)